

Ingeniería de Metales y Plásticos

INGEMEPLAS, s. l.

C.I.F. B-48.840.912

OFICINAS: C/ JUAN DE URBIETA, 8-10 ALMACENES: C/ MAR MEDITERRANEO, S/N C.P.: 48015 BILBAO TELF: 94 475 10 14 - 94 475 15 09 FAX: 94 474 54 55 E-MAIL: imp@ingemeplas.com WEB: www.ingemeplas.com

Ingemeplas S.L. Catalogo de productos

- I. Sección Metales
- II. Sección Plásticos
- III. Sección Aislantes
- IV. Sección Normalizados
 - V. Sección Loctite
- VI. Sección Acoplamientos

2011

LOCTITE.

Ingeniería de Metales y Plásticos

INGZMZPLAS, s. l.

C.I.F. B-48.840.912

OFICINAS: C/ JUAN DE URBIETA, 8-10 ALMACENES: C/ MAR MEDITERRANEO, S/N C.P.: 48015 BILBAO TELF.: 94 475 10 14 - 94 475 15 09 FAX: 94 474 54 55 E-MAIL: imp@ingemeplas.com WEB: www.ingemeplas.com

SECCION DE METALES NO FERRICOS

Aluminios,

Bronces,

Latones,

Casquillos de Bronce Auto lubricados (sinterizados)

• COBRES ELECTROLITICOS Y COBRES ESPECIALES

Cobre electrolítico, Cobre Cobalto Berilio, Cobre Cromo Zirconio

SECCION METALES FERRICOS

Hierros Perlítico de colada continua y nodular

ALUMINIO:

ALEACIONES YSUS UTILIDADES:

- Decoletaje y matrizado, viruta muy fragmentado, buen acabado de superficie, fácil mecanizado.
- 2030 Decoletaje, viruta muy fragmentada buen acabado de superficie.
- Torres estructurales de alta resistencia después de soldadas, gruas móviles, carrocerías, construcción naval, vagones y vagonetas, ascensores, chasis de camiones, conducciones de combustibles, aceite, químicos, ...
- Industria química, tanques de almacenamiento y recipientes a presión, cisternas para transportar cargas *calientes* tales como asfalto, tuberías para intercambiadores de calor y condensadores, construcción naval electrodomésticos,...
- Elementos estructurales, transportes terrestres, marina, coches de ferrocarril, oleoductos, arquitectura, muebles, remaches para ser aplicados en estado de temple, en estado de maduración o en estado de temple y maduración artificial, platos de bicicleta, ...
- Aviación y otras estructuras en que sea importante una elevada relación resistencia/peso. Aplicaciones hidráulicas de alta presión. Bastones de ski, armamento.

Otras aleaciones: 1050, 1200, 2014, 2017, 2024, 5052, 5086, 5154, 5251, 6060, 6063, 6061, 6081, 6351, 6151, 7015, 7020,...

EOUIVALENCIAS INTERNACIONALES DE LAS ALEACIONES DE ALUMINIO:

USA	, c	2011	2030	5083	5754	6082	7075
ESPAÑA	U.N.E.	L-3192	L-3121	L-3321	L-3390	L-3453	L-3710
FRANCIA	AFNOR	A-U5 Pb Bi	A-U4 Pb		A-G3 M	A-SG M 0,7	A-Z5 GU
ALEMANIA	DIN 1712	3.1655	Al Cu Mg Pb	Al Mg 4,5 Mn	Al Mg 3	Al Mg Si 1	AlZnMgCu1,5

COMPOSICIONES:

%	2030	5083	5754	6082	7075	
Si	1	0,50	0,30	0,8 a 1,2	0,50	
Fe		0,50	0,50	0,45	0,70	
Cu	3,5 a 4,9	0,10	0,10	0,10	1,2 a 2	
Mn 👌	0,4 a 1	0,3 a 0,9	0,2 a 0,8	0,15	0,30	
Mg	0,4 a 1,5	4 a 4,9	2,8 a 3,4	0,6 a 1	2,3	
Zn	1	0,20	0,20	0,20	5 a 6	
Cr	0,30	0,25	0,25	0,10	0,1 a 0,4	
Otros	n		0,15	0,15	0,15	
Al	Resto	Resto	Resto	Resto	Resto	

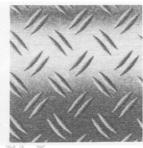
<u>CARACTERISTICAS MECANICAS:</u>

WERIA DE ME	2030	5083	5754	6082	7075
Carga Rotura Rm N/mm2	370	300	220	320	280
Limite Elastico Rp0,2 N/mm2	235	140	100	280	150
Alargamiento a 5,65 %	7	18	23	12,5	10
Mod.Elasticidad N/mm2	71000	71000	71000	70000	73000
Cizallamiento N/mm2		180	130	200	90
Dureza Brinell HB	100	72	50	100	ASTIC

ALMACEN: C./MAR MEDITERRANEO, S/N OFICINA: C./JUAN DE URBIETA, 8-10 TELS.: 94 475 10 14 - 94 475 15 09 FAX: 94 474 54 55 48015 BILBAO E-MAIL: imp@ingemeplas.com WEB: www.ingemeplas.com

<u>ALUMINIO CHAPAS DE DAMERO</u>

"Aluminio Magnesio 5754 Anticorrosiva AG-3"


Tipo de relieve:

2 Palillo

5 Palillo

Medidas estandarizadas:

Espesor	Peso por mt ²	Espesor	Peso por mt ²
2 mm	6,34 kg	4,5 mm	13,09 kg
2,5 mm	7,69 kg	5 mm	14,44 kg
3 mm	9,04 kg	A DE METAL 5,5 mm	15,79 kg
3,5 mm	10,39 kg	6 mm	17,14 kg
4 mm	11,74 kg		9/2

Formato de las chapas:

1000 x 2000 mm 1250 x 2500 mm 1500 x 3000 mm

Aplicaciones:

Pavimentos antideslizantes
Plataformas y escaleras
Pasarelas y corredores en
Instalaciones industriales
En arquitectura de interiores
Para realzar los ambientes comunes

BRONCE:

<u>ALEACIONES Y SUS UTILIDADES:</u>

- 85/5/5 Excelente material de rozamiento para cargas medias. Permite trabajar a buenas velocidades y presiones. Tiene óptimas propiedades de deslizamiento.
- 90/10 Se recomienda para uso de responsabilidad, cojinetes que soporten grandes cargas e incluso sometidos a golpeteo. Resistencia a la corrosión. Recomendable para ruedas dentadas, maquinaria, casquillos para motores y accesorios de alta calidad
- Bronce especial para la fabricación de coronas para reductores, ascensores, tuercas y tornillos sin fin sometidos a grandes esfuerzos y velocidades. Se aconseja que, para su máximo rendimiento, trabaje sumergido en aceite
- **80/10/10** Esta aleación (también conocida como bronce al plomo **BR/PB**) tiene grandes propiedades de antifricción y puede ser usado para cojinetes donde las condiciones de lubricación no sean perfectas debido a que su alto contenido en plomo evita el agarrotamiento.
- **80/10/5/5** También conocido como bronce al aluminio **BR/AL**. Piezas resistentes a la corrosión. Piezas de fricción para cargas pesadas.

Para otras aleaciones no duden en consultar.

<u>EQUIVALENCIAS INTERNACIONALES DE ALEACIONES DE</u> BRONCE:

	85/5/5/5	90/10	88/12	86/14	80/10/10 BR/PB	80/10/5/5 BR/AL
DIN	Pg5	GSnBz-10	GSnBz-12	GSnBz-14	GSnPbBz-10	GniAlBzF-50
UNE	37.103	37.103	37.103	37.103	37.103	37.103
ASTM	WERIA DE META	(65)	B	18		
Otras	Fucustanciplo	Fucustan –10	Fucustan-12	Fucustan-14	Fucustanziplo	C.415
	80	(R)	44			30

COMPOSICION:

%	85/5/5/5	90/10	88/12	86/14	80/10/10 BR/PB	80/10/5/5 BR/AL
Cu	84 a 86 %	89 a 91 %	87 a 89 %	85 a 87 %	78 a 80 %	78 a 81 %
Sn	4 a 6 %	9 a 11 %	11 a 13 %	13 a 15 %	9 a 11 %	0 %
Zn	4 a 6 %	0 %	0 %	0 %	0 %	0 %
Pb 🧳	4 a 6 %	0 %	0 %	0 %	8 a 11 %	0 %
ERIA DAL	0 %	0 %	0 %	0 %	0 %	10 a 11,5 %
Ni	0 %	0 %	0 %	0 %	0 %	3 a 5 %
Fe	0 %	0 %	0 %	0 %	0 %	3a5%

<u>CARACTERÍSTICAS MECÁNICAS:</u>

3	85/5/5/5	90/10	88/12	86/14	80/10/10 BR/PB	80/10/5/5 BR/AL
Res a la tracción N/mm2	250	280	300	300	220	650
Alargamiento %	8 a 11	5 a 12	3 a 5	4 a 5	8 a 12	10 a 18
Dureza Brinel HB	65 a 75	85 a 95	80 a 110	90 a 115	65 a 80	170 a 210
Coeficiente de dilatación ºC	19,3 x 10-6	18,4 x 10-6	18,5 x 10-6	18,6 a 10-6	18,4 x 10-6	1,7 x 10-6
Peso específico Kg/dm3	8,6 a 8,8	8,6 a 8,8	8,6 a 8,8	8,6 a 8,83	8,8 a 9,1	7,35

ALMACEN: C./MAR MEDITERRANEO, S/N OFICINA: C./JUAN DE URBIETA, 8-10 TELS.: 94 475 10 14 - 94 475 15 09 FAX: 94 474 54 55 48015 BILBAO E-MAIL: imp@ingemeplas.com WEB: www.ingemeplas.com

BRONCES ESPECIALES:

** Estos son unos bronces de alta resistencia y gran dureza especiales para ciertos trabajos. Entre otros tenemos los IMP 21, IMP 22 y IMP 25. Veamos sus características principales:

Características IMP 21 IMP 22 IMP 25
Aprox.

Dureza HB	280		330			370			
12/1	Cu	80,2%	Max	Cu	78,7%	Max	Cu	77,5%	Max.
TO TALE	Al	12,8%	Max	Al	13,8%	Max	Al	14,6%	Max.
Aleaciones	Fe	4,5%	Max	Fe	5,0%	Max	Fe	5,7 %	Max.
	Otros	2,5%	Max	Otros	2,5%	Max	Mn	2,4 %	Max.

Para cualquier otra aleación no duden en llamar y consultarnos

LATON:

-Ingemeplas comercializa principalmente el latón denominado CuZn38Pb2, entre otras equivalencias también se le denomina de las siguientes maneras:

	UNI	DIN	AFNOR	
UNE	P-CuZn35 Pb2	CuZn36Pb1,5 2.0330	U-Z35Pb2 A.51105	
C-7-29 DL2	BS	ASTM	ISO	
CuZn38 Pb2	CZ119	B453 No.353	CuZn36Pb2 R426	

COMPOSICIÓN:

No.	Cu	Pb		7,	To Fo	Total
min	Max	min	Max	Zn	Fe	Otros
59,5	62,5	1,0	3,0	resto	0,4	0,8

CARACTERÍSTICAS MECÁNICAS:

Resistencia a la tracción N/mm2	Min. 410
Limite elástico 0,2% N/mm2	Min. 240
Alargamiento min. A5 - A10 CAMERIA DI	23 - 20
Dureza brinell HB min - Max	100 - 130

FORMATOS DISPONIBLES Y TABLAS DE PESOS EN LATON:

-Tolerancias aproximadas de las barras de latón.

	11 43		
	Redondo	Cuadrado	Hexagonal
MEDIDA	Tolerancia	Tolerancia	Tolerancia
De 5 a 6	+ 0 / - 0,048	+ 0 / - 0,075	+ 0 / - 0,075
de 7 a 10	+ 0 / - 0,058	+ 0 / - 0,090	+ 0 / - 0,090
de 11 a 18	+ 0 / - 0,07	+ 0 / - 0,110	+ 0 / - 0,110
de 19 a 30	+ 0 / - 0,084	+ 0 / - 0,130	+ 0 / - 0,130
de 31 a 50	+ 0 / - 0,1	+ 0 / - 0,160	+ 0 / - 0,160
de 55 a 80	+ 0 / - 0,12	+ 0 / - 0,19	+ 0 / - 0,190
de 90 a 100	+ 0 / - 0,14	+ 0 / - 0,220	+ 0 / - 0,220

Disponemos de material en formato barra redonda, cuadrad, hexagonal, tubo y placas de 1000 x 2000

Para otras aleaciones o formatos no dude en consultar

CASQUILLOS AUTOLUBRICADOS:

- Distribuidores autorizados del fabricante AMES.
- Vean en páginas siguientes las características de los cojinetes y sus medidas.

Cojinetes Autolubricados

Los primeros productos fabricados por AMES en su fundación, a principios de la década de los años 50, fueron Cojinetes Autolubricados de Bronce Sinterizado. Años más tarde, esta línea de productos se complementó empleando hierro para su fabricación, de coste menor y utilizables en múltiples situaciones.

En consecuencia, más de cuarenta años de experiencia avalan la calidad y rigor de su fabricación.

Constantes mejoras en el proceso de fabricación, aplicación de modernas técnicas de investigación en el campo de la tribologia y lubricación, así

como un dominio total de la metalurgia de estos metales, han situado a AMES entre los líderes mundiales de la fabricación de Cojinetes Autolubricados Sinterizados

Normalizados

¿ Por Qué SELFOIL?

AMES pone a disposición de sus clientes un producto elaborado con los más modernos medios existentes hoy en día en la tecnología de los metales sinterizados. **SELFOIL** proporcionará:

OFICINAS: C/JUAN DE URBIETA, 8-10 ALMACENES: C/MAR MEDITERRANEO, S/N C.P.: 48015 BILBAO ELF.: 94 475 10 14 - 94 475 15 09 FAX: 94 474 54 55 E-MAIL: imp@ingemeplas.com WEB: www.ingemeplas.com

- · Eliminación de riesgo de gripado.
- · Película de aceite permanente.
- · 20 a 30% del volumen está impregnado en aceite.
- · Funcionamiento silencioso.
- · Bajo Coeficiente de Rozamiento.

Economía:

- · Eliminación de engrasadores.
- Evitar entretenimiento posterior.
- · Existencia permanente.
- Entrega inmediata.

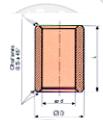
Tecnología:

- · Alta precisión.
- · Uniformidad en todas sus series.
- · Cargas de 0 a 100 kg./cm²
- · Velocidades hasta 30.000 r.p.m.
- · Temperaturas desde -20°C hasta
- +120°C.

Aceite de Impregnación:

- Aceite mineral parafínico de grado de viscosidad ISO-VG-68.
- Carga Permisible:
 - \cdot PV = 2,5MPa*m/s.

Tipo A Cilíndricos


TOLERANCIAS Cojinetes sin montar:

 $d = \emptyset$ interior Tolerancia: G7 $D = \emptyset$ exterior Tolerancia: s7 L = Longitud Tolerancia: j13

Excentricidad Lectura total de comparador:

Ø int. hasta 35mm Tolerancia: 70 µm Ø int. de 35 a 50 mm Tolerancia: 100 µm

Cojinetes después de calado

DESIGNACIÓN

Un cojinete de Ø interior 22 mm, Ø exterior 28 mm y Longitud 30 mm será designado de la siguiente forma:

- Cojinete SELFOIL A-22-28-30

(La letra A caracteriza los cojinetes Cilíndricos)

Tipo B Cilíndricos

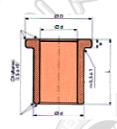
TOLERANCIAS Cojinetes sin montar:

 $d = \emptyset$ interior Tolerancia: G8 $D = \emptyset$ exterior Tolerancia: s8 L = Longitud Tolerancia: j13 $D' = \emptyset$ Valona Tolerancia: j13 e = Grueso Tolerancia: j14

Excentricidad Lectura total de comparador:

Ø int. hasta 35mm Tolerancia: 70 µm Ø int. de 35 a 50 mm Tolerancia: 100 µm

Cojinetes después de calado

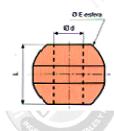

DESIGNACIÓN

Un cojinete de \varnothing interior 22 mm, \varnothing exterior 28 mm y Longitud 30 mm será designado de la siguiente forma:

-Cojinete SELFOIL 11-22-28-30/33-4

(La letra B caracteriza los cojinetes Cilíndricos con Valona)

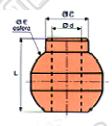
Tipo C Esféricos


DESIGNACIÓN

Un cojinete esférico de: Ø interior 10 mm, Ø Esfera 22 mm y Longitud 16 mm será designado de la siguiente forma:

> - Cojinete SELFOIL C-10-22-16

(La letra C caracteriza los cojinetes Esféricos)



Tipo D Esféricos con cuello

DESIGNACIÓN

Un cojinete esférico con cuello de: Ø interior 10 mm, Ø Esfera 22 mm, Ø Cuello 15 mm y Longitud total 18 mm será designado de la siguiente forma:

> -Cojinete SELFOIL D-10-22-15-18

(La letra D caracteriza los cojinetes Esféricos con

Materiales

De entre los materiales Standard de que dispone, AMES ha elegido el que, por su dilatada experiencia, presenta las mejores prestaciones y economía:

Material:

Bronce aleación AMES A2

Equivalente a las siguientes Normas:

ASTM B-438 Grado 1 Clase A Tipo II MPIF CT-1000-K26

AENOR UNE 37.103 en cuanto a composición.

Ensayo normalizado de la resistencia mecánica de un Cojinete Autolubricado SELFOIL: Resistencia radial: Se comprime el casquillo entre dos placas planas paralelas a su eje basta

su rotura. En el caso de que la muestra no sea cilíndrica, se mecanizará un cilindro con el que realizar el ensayo.

La resistencia mínima exigible responde a la siguiente fórmula:

$$P = K \frac{L \times T^2}{D - T}$$

P = Resistencia teórica radial a la compresión en N.

K = Constante de resistencia para este material 178 N/mm².

L = Longitud del Cojinete en mm.

T = Espesor de la pared del Cojinete o cilindro mec. en mm.

D = Diámetro exterior del Cojinete en mm.

Para velocidades lineales periféricas del eje superiores a 1,00 m/s, la carga permisible será calculada como sigue:

$$p = \frac{1,77}{3}$$

P = Carga permisible en N/mm² (*)
 V = Velocidad periférica del eje en m/s.

(*) 1,77 N/mm² equivale al PV = 18, (kg/cm² · M/S)

ALMACEN: C./MAR MEDITERRANEO, S/N OFICINA: C./JUAN DE URBIETA, 8-10 TELS.: 94 475 10 14 - 94 475 15 09 FAX: 94 474 54 55 48015 BILBAO

E-MAIL: imp@ingemeplas.com WEB: www.ingemeplas.com

MATERIAL EMPLEADO EN LOS COJINETES AUTOLUBRICADOS

Las características mecánicas son las siguientes:				
		Valores	límites	
	Valores típicos	Mínimo	Máximo	
Densidad en gr/cc		6,4	6,8	
Contenido de aceite en %		19		
Porosidad (indicativo) en %	22			
Resistencia Tracción en N/mm	99			
Dureza (indicativo) en HRH	50			
Características de funcionam	iento:		/ / //////	

Velocidad del eje en m/s	Carga permisible en N/mm²
Baja o intermitente	10
0,13 a 0,25	10
0,25 a 0,51	3,4
0,51 a 0,76	2,2
0,76 a 1,01	2,5
1 a 3	2,5

Aplicaciones

ALMACEN: C./MAR MEDITERRANEO, S/N OFICINA: C./JUAN DE URBIETA, 8-10 TELS.: 94 475 10 14 - 94 475 15 09 FAX: 94 474 54 55 48015 BILBAO E-MAIL: imp@ingemeplas.com WEB: www.ingemeplas.com

COBRES:

ALEACIONES Y SUS UTILIDADES.

ELECTROLITICO

Tiene como principales utilidades su gran conductividad electrica y termica siendo por esto usado como conductor eléctrico y como conductor térmico.

CuCrZr Material similar CuCr1, de mayor resistencia, utilizado especialmente en la soldadura de aceros galvanizados.

Moldes para maquinas de colada continua, anillos de cortocircuito para motores de corriente alterna y en general para piezas con elevadas características mecánicas y eléctricas en aplicaciones especiales a altas temperaturas.

CuCoBe Soldadura por roldanas, protuberancias y a tope de aceros inoxidables y resistentes a altas temperaturas

Otras aleaciones: Consultar.

FORMATOS DISPONIBLES.

Disponemos de barras redondas, pletinas, chapas enteras (1000 x 2000) y cortadas, tubo rígido (de 5m de largo) y bobinas de tubo (25 y 50m).

Para cualquier otra aleación o formato no duden en consultarnos.

EQUIVALENCIAS INTERNACIONALES DE ALEACIONES DE COBRE:

	Electrolítico	CuCrZr	CuCoBe
DIN	E-Cu 2.0060	2.1293/2.1292	2.1285
ISO SOULS	CU-ETP	CuCr1Zr	CuCo2Be
AFNOR	Cu/al	UC1Zr	UK2Be

COMPOSICION:

	Electrolítico	CuCrZr	CuCoBe
Cr		8 1	000
Co	ō ·	ASTI	2.5
Be		1 S V B	0.6
Zr	GENIE	FIA DE METAL 0.2	(4)
Cu	99.9	98.8	96.9

CARACTERISTICAS MECANICAS:

	Electrolítico (DURO)	CuCrZr	CuCoBe
Peso Específico Kg/dm3	8,9	8,9	8,9
Conductivi.Electric. %IACS	96,5	75	45
Dureza Brinel HB 10/1.000/30	80-105	125-150	180-230
Resis. a la tracción kg/mm2	290-360 N/mm2**	53	69
Alargamiento 50mm %	**	15	10
Limite elástico	Min.250	48	62
Temp. ablandamiento	FRIA DE NIC **	525°	500°

ALMACEN: C./MAR MEDITERRANEO, S/N OFICINA: C./JUAN DE URBIETA, 8-10 TELS.: 94 475 10 14 - 94 475 15 09 FAX: 94 474 54 55 48015 BILBAO E-MAIL: imp@ingemeplas.com WEB: www.ingemeplas.com

METALES FERRICOS:

ALEACIONES YSUS UTILIDADES:

FUNDICIÓN GRIS EN COLADA CONTINUA (LAMINAR Y ESFEROIDAL)

La fundición en colada continua presenta una estructura de grano fino y uniforme debido al rápido enfriamiento en la línea de colada, sin grietas ni porosidades, permitiendo un mecanizado muy preciso, incrementándose el rendimiento de las herramientas.

Frente a la fundición por moldeo se eliminan los costes del modelo, se reducen los tiempos de mecanizado, desaparecen las incrustaciones de arena, hay menores tiempos de entrega al no tener que esperar la producción del molde y la fundición de las piezas, ausencia de rebabas y rechupes, etc.

Presenta menor peso que los aceros, mecanizado más rápido que estos, excelentes resistencia mecánica al desgaste (motivada por el efecto lubricante del grafito), mayor conductividad térmica y capacidad de amortiguación.

Es muy aconsejable su utilización en aplicaciones donde la fricción entre metales es problemáticas. Es un material muy utilizado para guías, deslizaderas, poleas piñones engranes y transmisiones, bombas, rodillos de acería, levas, distribuidores, cilindros, tapas y guías, válvulas, bloques, pistones de freno, asientos y guías de válvulas, sistemas de inyección, correderas de dirección, sistemas para frenos abs, etc.

GG25 Calidad media, tiene un buen equilibrio entre características mecánicas y facilidad de mecanizado

GGG40 Alto porcentaje de alargamiento, estructura ferrítica, baja dureza, alta permeabilidad magnética y buena conductividad térmica y eléctrica.

GGG50 Consigue una mayor dureza gracias a su estructura ferrítica

GGG60 Recomendado para aplicaciones que requieran una gran resistencia al desgaste. Además acepta un templado de superficie.

Para otras aleaciones no duden en consultar.

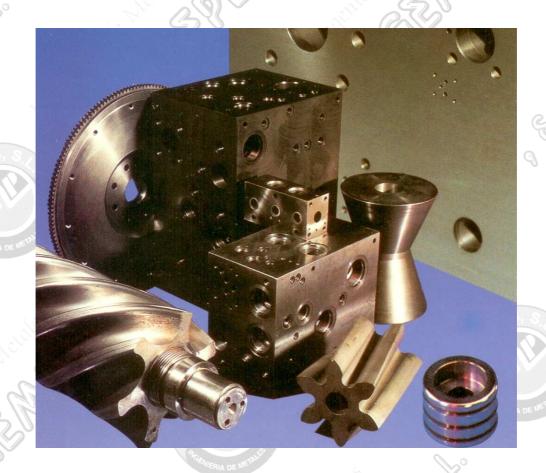
EQUIVALENCIAS INTERNACIOALES DEL HIERRO

	GG25	GGG40	GGG50	GGG60
DIN	1691 GG25	1693 GGG40/12	1693 GGG50/7	1693 GGG60/2
ISO	ISO R-185 Grado 25	<u></u>	ISO 1083 500-7	
UNE	UNE 36-111 FG-25	FGE-40-12	FGE-50-7	AND C
ASTM	ASTM A-48 Grado 35	. 0° - e	ASTM 536 Grado 65-45-12	(5) - B
BS	BS 1452 Grado17	Color Color	BS 2789 500-7	
Otros	GD 250 EN-GJL-200 EN-JL1030	EN-GJL-250 EN-JL1040	FGS 500-7 EN-GJS-500-7 EN-JS1050	EN-GJS-350 EN-JS1060
DUREZA	180-210 HB	160-210 HB	180-230 HB	210-260 HB

<u>COMPOSICION</u>

	Fundición gris	Fundición Nodular
S, S, C	2,80 a 3,80%	3,40 a 3,80%
Si	1,40 a 3,00%	2,30 a 2,80%
Mn	0,40 a 0,90%	0,06 a 0,45%
P 3	0,09 a 0,40%	< 0,10%
S	0,04 a 0,10%	< 0,03%

CARACTERISTICAS MECANICAS:


3	Fundición gris	Fundición Nodular
Resistencia a la tracción kg/mm2	25-30	50-65
Resistencia a la compresión kg/mm2	100-130	100-130 CAMERIA DE
Resistencia al cizallamiento	0,9 RT	1,1-1,2 RT
Resistencia a la flexión kg/mm2	30-50	80-90
Resistencia probeta entallada Waria de Maria	débil	310
Resistencia eléctrica MΩ/cm2	60-90	50-60
Modulo elasticidad	12000	18000
Limite elasticidad kg/mm2	W- CE	32-42
Alargamiento a la rotura	inf a 1 %	7-18 %

ALMACEN: C./MAR MEDITERRANEO, S/N OFICINA: C./JUAN DE URBIETA, 8-10 TELS.: 94 475 10 14 - 94 475 15 09 FAX: 94 474 54 55 48015 BILBAO E-MAIL: imp@ingemeplas.com WEB: www.ingemeplas.com

OFICINAS: C/ JUAN DE URBIETA, 8-10 ALMACENES: C/ MAR MEDITERRANEO, S/N C.P.: 48015 BILBAO TELF.: 94 475 10 14 - 94 475 15 09 FAX: 94 474 54 55 E-MAIL: imp@ingemeplas.com WEB: www.ingemeplas.com

~ 101		
	Fundición gris	Fundición Nodular
Limite de fatiga a la torsión kg/mm2	12 – 17	20-36
Peso específico kg/dm3	7,2	7,2
Dureza HB	160-220	170-220
Conduct. térmica cal/cm/seg °C	0,11	0,09
Coeficiente de dilatación 10-6°C	13	12
Fuerza coercitiva (OE)	5 10	57
Coeficiente de Rozamiento	00	1 0
- 32kglcm2 (fundición acero)	0,1	0,12
- 60kgkm2 (fundición acero)	0,14	0,16
Temperatura temple °C aceite	850-900	850-900
Temperatura revenido	como fundición clásica	
	The state of the s	CALL TO V

